Search results for "Betti sequence"

showing 1 items of 1 documents

Tower sets and other configurations with the Cohen-Macaulay property

2014

Abstract Some well-known arithmetically Cohen–Macaulay configurations of linear varieties in P r as k-configurations, partial intersections and star configurations are generalized by introducing tower schemes. Tower schemes are reduced schemes that are a finite union of linear varieties whose support set is a suitable finite subset of Z + c called tower set. We prove that the tower schemes are arithmetically Cohen–Macaulay and we compute their Hilbert function in terms of their support. Afterwards, since even in codimension 2 not every arithmetically Cohen–Macaulay squarefree monomial ideal is the ideal of a tower scheme, we slightly extend this notion by defining generalized tower schemes …

MonomialTower setBetti sequence; Cohen-Macaulay; Tower setCommutative Algebra (math.AC)Combinatoricssymbols.namesake13H10 14N20 13D40FOS: MathematicsMathematicsmonomial idealsHilbert series and Hilbert polynomialAlgebra and Number TheoryIdeal (set theory)Mathematics::Commutative AlgebraCohen–Macaulay propertyMonomial idealCodimensionBetti sequenceMathematics - Commutative AlgebraTower (mathematics)Arithmetically Cohen-MacaulayCohen-MacaulayPrimary decompositionSettore MAT/02 - AlgebraScheme (mathematics)Hilbert functionsymbolsSettore MAT/03 - GeometriaCohen–Macaulay property monomial ideals Hilbert function.
researchProduct